Forest Inventory Attribute Prediction Using Lightweight Aerial Scanner Data in a Selected Type of Multilayered Deciduous Forest

Here below the link to the complete paper by Ivan Sačkov, Giovanni Santopuoli, Tomáš Bucha, Bruno Lasserre and Marco Marchetti. One first product related to our FRESh LIFE Project.

http://www.mdpi.com/1999-4907/7/12/307

ABSTRACT:

Airborne laser scanning is a promising technique for efficient and accurate, remote-based forest inventory, due to its capacity for direct measurement of the three-dimensional structure of vegetation. The main objective of this study was to test the usability and accuracy of an individual tree detection approach, using reFLex software, in the evaluation of forest variables. The accuracy assessment was conducted in a selected type of multilayered deciduous forest in southern Italy. Airborne laser scanning data were taken with a YellowScan Mapper scanner at an average height of 150 m. Point density reached 30 echoes per m2, but most points belonged to the first echo. The ground reference data contained the measured positions and dimensions of 445 trees. Individual tree-detection rates were 66% for dominant, 48% for codominant, 18% for intermediate, and 5% for suppressed trees. Relative root mean square error for tree height, diameter, and volume reached 8.2%, 21.8%, and 45.7%, respectively. All remote-based tree variables were strongly correlated with the ground data (R2 = 0.71–0.79). At the stand-level, the results show that differences ranged between 4% and 17% for stand height and 22% and 40% for stand diameter. The total growing stock differed by −43% from the ground reference data, and the ratios were 64% for dominant, 58% for codominant, 36% for intermediate, and 16% for suppressed trees.

forests-07-00307-g001forests-07-00307-g002

 

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s