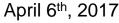
FreshLIFE

Telerilevamento a supporto della Gestione Forestale Sostenibile

IFE14_ENV/IT/000414 - Demonstrating remote sensing integration in sustainable forest management

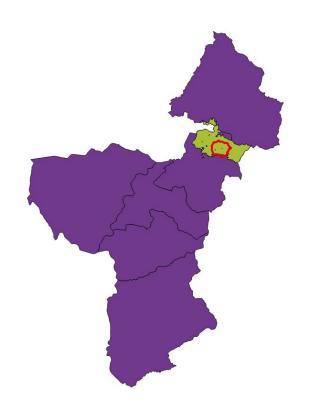


LIFE Environment and Resource Efficiency

LIFE14 ENV/IT/000414 Demonstrating Remote Sensing integration in sustainable forest management

> Bacci D.¹, Barzagli A.², Del Monte B.¹, Del Perugia B.², Travaglini D.² ¹Municipalities Union Valdarno and Valdisieve ²University of Florence

valdarnoevaldisieve



MUNICIPALITIES UNION VALDARNO AND VALDISIEVE (UCVV)

In the north est side of Tuscany

Rincine public forest (green) and project area (red)

The activities of UCVV

- 1. Public forest properties (tuscany region)(PAFR)) management and Muraglione property (UCVV owner) 4.500 ha according to sustainable selvicolture rules;
- 2. Training and qualification of forest workers (public and private) to improve safety standars and productivity level at the same time;
- 3. Management of the processes about agricolture and forest activities linked by specific regional laws (LR 39/00 e s.m.i.) (tagli boschivi, movimenti terra, ecc.) and, in associated way for the municipalities also for building activities;
- 4. Active partecipation in the integrated sistem fire fight of Tuscany region through the availability of specialized personell and destinated; associated management of burned forest areas inventory;
- 5. Hydraulic maintenance of waterways
- 6. Intermunicipality civil protection office;
- 7. Associated management of the environmental impact evaluation processes;
- 8. Agricolture activities service (ecotourism, environmental education etc.)
- **9. Field research activities in collaboration** with UNIFI, CNR and others;
- 10. Actions to promote renewable energy sources
- 11. To be underlined that the only one Italian Model Forest is based here, in Rincine

The activities of UCVV in the project

- Action B1, existing data forniture
- 2. Action B2, new data acquisition
- 3. Action B5, data elaboration
- 4. Action D6, workshop and seminars
- 5. Action D7, networking

LIST OF BENEFICIARIES

- 1) Italian Academy of Forest Sciences (Coordinating beneficiary)
- 2) Municipality of Caprarola
- 3) Society Demetra
- 4) Oben spin-off of the University of Sassari
- 5) Molise Region
- 6) RomaNatura
- 7) Municipalities Union Valdarno and Valdisieve
- 8) University of Florence
- 9) University of Molise
- 10) University of Tuscia

PROJECT DURATION

Start date: September 7th, 2015 End date: September 6th, 2019

PROJECT BUDGET

Total project budget: € 2,854,979

Total eligible project budget: € 2,810,804

EU financial contribution: € 1,686,201

OBJECTIVES

Demonstrating the feasibility of integration of data collected from forest inventories with remotely sensed information for the spatial estimation of selected Forest Europe quantitative indicators of Sustainable Forest Management (SFM)

Goals of demonstration activities:

- 1. Testing and evaluating the technical and economic feasibility of integrating remote sensed information collected by Drones equipped with LiDAR and multispectral sensors, with plot-level data from forest inventories, in order to:
 - i) map Forest Europe SFM indicators;
 - ii) stratify medium to large scale forest management units by the EEA classification of European Forest Types (EFTs)
- 2. Developing a Forest Information System, aggregating multiple indicator maps, to support forest managers to evaluate success towards SFM at the scale of the forest management unit

PROJECT ACTIONS

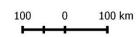
		_	_	_	_	_	_	_	_	Ļ	_	_	_	_	_	_	_	_	_		_		_
	Action		201	015			201	.6	4	20	2017			20]	2018		2019		_	2		020	
Action numbe		1	ıı þ	ш	IV	ı	II I	п	۷	П	III	IV	ı	п	III I	۷	l II	ı ııı	IV		11	ш	,
A. Pre	paratory actions (if needed)																						
B. Imp	lementation actions (obligatory)									Г													
B.1	Existing data acquisition and harmonization								Т							\top	Τ				\Box	\top	
B.2	New data acquisition		Т	Т	\neg			-1-	-1-		1-	П			\Box	\top	Τ	\Box			\Box	\perp	
B.3	Mapping SFM indicators			П					1							Т	Τ				\Box	\top	
B.4	Forest Information System implementation		\top	П	П			\top	Т	Т		П								П	Т	\top	
B.5	Upscaling project results	П	Т	Т	П	Т	Т	Т	Т	Т	П	П		П		7	Т	▝		П	Т	Т	٦
C. Mor	itoring of the impact of the project actions (obligatory)																						
C.1	Local monitoring								1								ı				Т	\Box	٦
C.2	Large scale monitoring														■ ı						\Box		
C.3	Socio Economic Impact of the project actions on the local economy and population		1			•	•	•	•	•					•	•	Ī			П	T	T	
D. Pub	lic awareness and dissemination of results (obligatory)									I													٦
D.1	Project Website		Т	П			П		1							7	Т			П	Т	Т	٦
D.2	Layman's Report	П	T	\exists	T	\neg	T	\top	Т	Г	Г	П		П			T			П	T	\top	٦
D.3	Life Notice Boards						T	Т	Т		Г	П			T					П	Т	\top	٦
D.4	Technical Report and Training								Т						• I								
D.5	Report for policy makers								Т	Г											\Box	\top	
D.6	Workshops, seminars and meetings								1						■ I						\top	\top	
D.7	Networking		\neg						1	•							Ī			П	\neg	\top	
E. Proj	ect management and monitoring of the project progress (obligator	y)																					
E.1	Project Management and monitoring of the project progress																Τ				\Box	\Box	
E.2	After Life Plan			I	I	I		T	Ι						T		ı						
E.3	Indicators																						
E.4	External Audit		T														ı						

STUDY AREAS

1 Rincine

Municipality of Londa (Florence, Tuscany) Regional estate forest Managed by Unione di Comuni Valdarno e Valdisieve

2 Caprarola

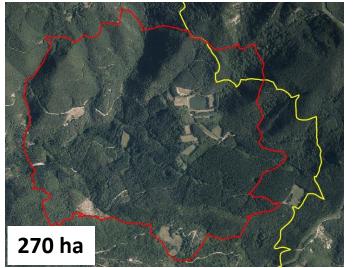

Municipality of Caprarola (Viterbo, Lazio) Regional Nature Reserve of Lago di Vico Site of the Natura2000 network Managed by Municipality of Caprarola

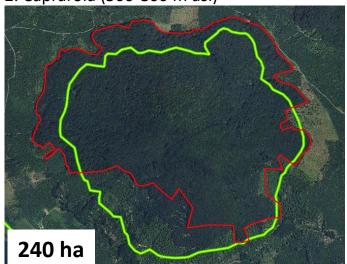
3 Decima Malafede

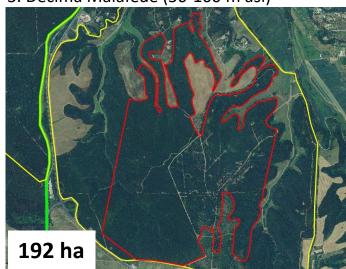
Municipality of Rome (Rome, Lazio) Nature Reserve Decima Malafede Site of the Natura2000 network Managed by RomaNatura

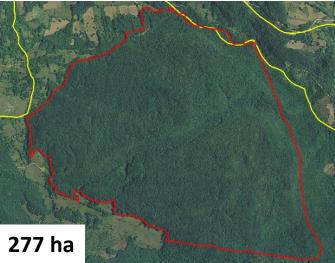
4 Bosco Pennataro

Municipality of Vastogirardi (Isernia, Molise) Site of the Natura2000 network Managed by National Forest Service, Office for Biodiversity Isernia






1. Rincine (500-1000 m asl)


2. Caprarola (500-800 m asl)

3. Decima Malafede (50-100 m asl)

4. Bosco Pennataro (1000-1200 m asl)

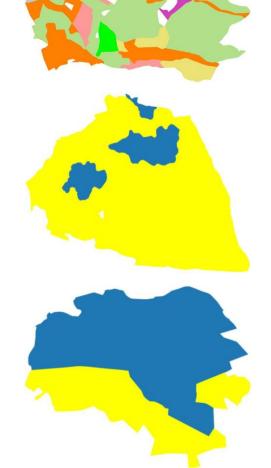
Study area

Natura2000 site

European Forest Type	Study area									
	Rincine	Caprarola	Decima Malafede	Bosco Pennataro						
Apennine-Corsican mountainous beech forest	Χ	X		Х						
Chestnut forest	Χ									
Downy oak forest	Χ									
Italian alder forest	Χ									
Mediterranean evergreen oak forest			Χ							
Other thermophilous deciduous forests	Χ									
Plantations of not-site-native species and self-sown exotic forest	Χ									
Plantations of site-native species	Χ		Χ							
Turkey oak, Hungarian oak and Sessile oak forest	Χ	X	X	X						
Other (e.g. shrubs non forest)	X		X							

ACTION B1 - Existing data acquisition and harmonization

Existing data		Study area								
		Rincine	Caprarola	Decima Malafede	Bosco Pennataro					
Forest inventory data	Num. of plots	16	65	N	77					
		(2004)	(2006)		(2013-2014)					
Remote sensing data	Ortophotos	Υ	Υ	Υ	Υ					
		(1954-2015)	(1989-2008)	(1989-2008)	(2005-2012)					
	Multispectral data	N	Spot (2006), RE	Spot (2006), RE	Spot (2006), IRS					
			(2011), IRS (2012)	(2011), IRS (2012)	(2012)					
	LiDAR data	Υ	N	N	N					
		(2015)								
Forest management data	Management plan	Y	Y	N	Y					
		(2005-2019)	(1989, 2007)		(2008-2017)					
	Forest compartment	Υ	Υ	N	Υ					
	map									
	Forest type map	Υ	Υ	N	Υ					
Auxiliary data	Topographic map	Υ	Υ	N	Υ					
	Soil map	Υ	Υ	Y	Y					
	Land use map	Υ	Υ	Y	Υ					
	·									
	Roads map	Υ	Υ	N	Υ					


Forest type maps were harmonized according to the EEA forest type classification system

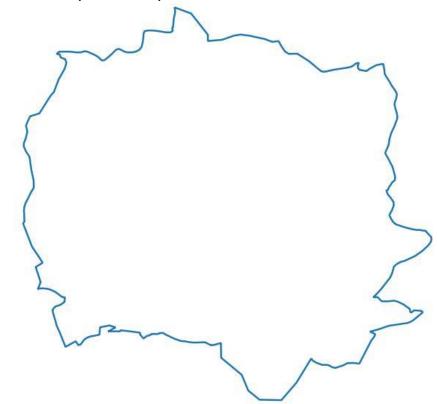
Forest inventory data were harmonized according to Cost ActionE43

ID Area	ID Plot	Specie	Diametro	Altezza	Numero	Area	Volume
					piante	basimetrica	
(n)	(n)	(nome)	(cm)	(m)	(n)	(m2)	(m3)
2	1	Faggio	5	13.6	1	0.002	0.01
2	1	Faggio	30	24.0	1	0.071	0.84
2	1	Cerro	10	17.6	2	0.016	0.13
2	1	Cerro	30	24.0	1	0.071	0.82
2	1	Cerro	35	24.8	3	0.279	3.36
2	1	Cerro	40	25.6	5	0.616	7.65
2	1	Cerro	45	26.3	4	0.620	7.91
2	1	Cerro	50	26.9	3	0.569	7.43
2	1	Cerro	55	27.4	4	0.927	12.33
2	1	Cerro	60	27.9	3	0.820	11.11
2	1	Acero opalo	5	13.6	3	0.006	0.04
2	1	Acero opalo	10	17.6	10	0.077	0.66
2	1	Acero opalo	15	20.0	6	0.104	0.99
2	1	Acero opalo	20	21.6	2	0.063	0.64

- Other
- Apennine-Corsican mountainous beech forest
- Chestnut forest
- Downy oak forest
- Italian alder forest
- Mediterranean evergreen oak forest
- Other thermophilous deciduous forests
- Plantations of not-site-native species and self-sown exotic forest
- Plantations of site-native species
- Turkey oak, Hungarian oak and Sessile oak forest

ACTION B2 - New data acquisition

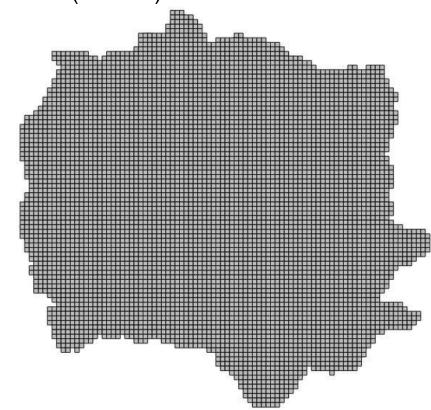
- New forest inventory data
- New remote sensing data



Forest inventory data

- Sampling scheme: One-per-stratum stratified sampling
- Sample size: 50 plots in each study area
- Plot size: square plot 23x23 m (529 m²)

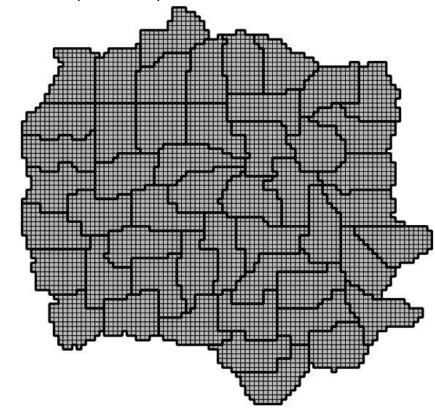
Study area (Rincine)



- Sampling scheme: One-per-stratum stratified sampling
- Sample size: 50 plot in each study area
- Plot size: square plot 23x23 m (529 m²)

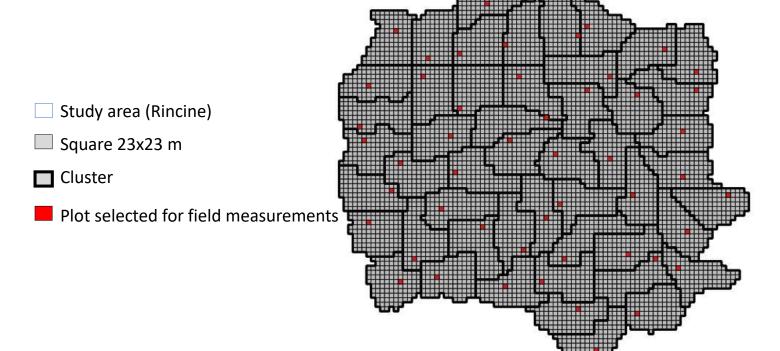
Study area (Rincine)

Square 23x23 m

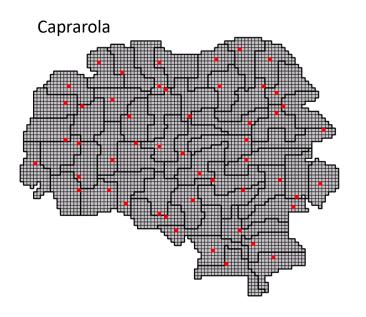


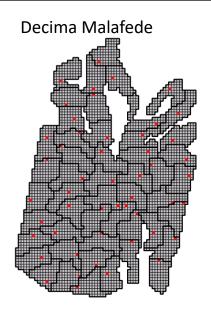
- Sampling scheme: One-per-stratum stratified sampling
- Sample size: 50 plot in each study area
- Plot size: square plot 23x23 m (529 m²)

- Study area (Rincine)
- Square 23x23 m
- Cluster



- Sampling scheme: One-per-stratum stratified sampling
- Sample size: 50 plot in each study area
- Plot size: square plot 23x23 m (529 m²)





- Square 23x23 m
- Cluster
- Plot selected for field measurements

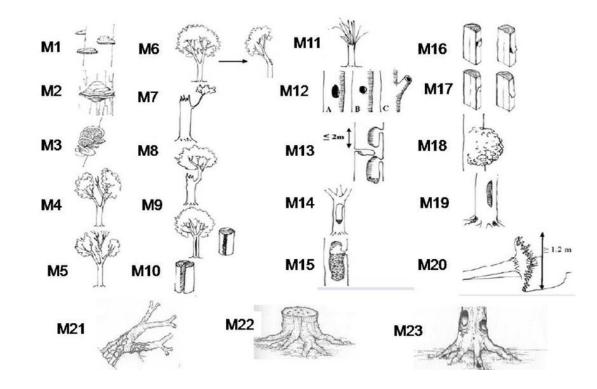


A common sampling protocol was used for field works

- Positioning of permanent plots
- Measurements of living trees
- Measurements of standing deadwood
- Measurements of stumps
- Measurements of lying deadwood

Positioning of permanent plots

- GNSS receiver (min 150 positions)
- 1 metal stake was installed in the plot centre



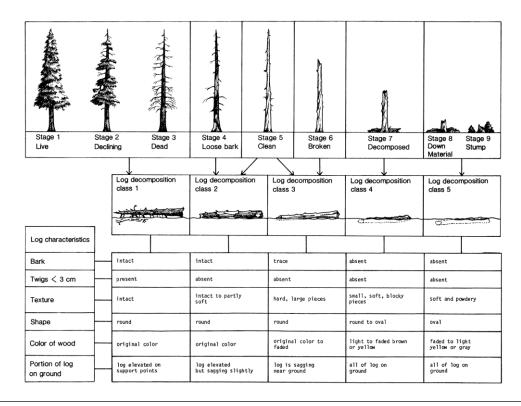
Measurements of living trees

- DBH > 2.5 cm
- Species
- Total height
- Height to crown base
- Crown projection (4 radii)
- Tree position (x,y)
- Crown dieback
- Microhabitat

Measurements of deadwood

Standind deadwood

- DBH > 2.5
- Diameter at half height
- Total height


- Species
- Position (x,y)
- Microhabitat
- Decay

Stump

- Diameter > 10 cm
- Origin
- Total height

Lying deadwood

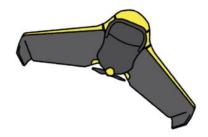
- Diameter > 10 cm, lenght > 1 m
- Diameter at half lenght
- Total lenght

Example of spatial data base Rincine Plot centre Living trees Standing deadwood Stump Trees outside the plot with their crown inside Lying deadwood

Remote sensing data

We are using two types of Drones

Video 01 Video 02



eBee – RGB and NIR cameras

	CONV MV	Comon C440 NID
	SONY WX	Canon S110 NIR
Flight altitude above ground level	145 m	145 m
Camera	Canon S110 RGB	Canon S110 NIR
R	660 nm	625 nm
G	520 nm	550 nm
В	450 nm	-
NIR	-	850 nm
Overlap	80%	90%
Sidelap	75%	85%
Focal length	4 mm	5 mm
ISO Sensibility	ISO-100	ISO-1600
Shutter speed	1/2000 sec	1/2000 sec
Image dimension	4608 x 3456	4000 x 3000
Field of view	200 x 150 m	168 × 126 m
Estimated ground sampling distance	0.050 m	0.042 m

eBee – Num. of flights, acquisition time and num. of images in each study area

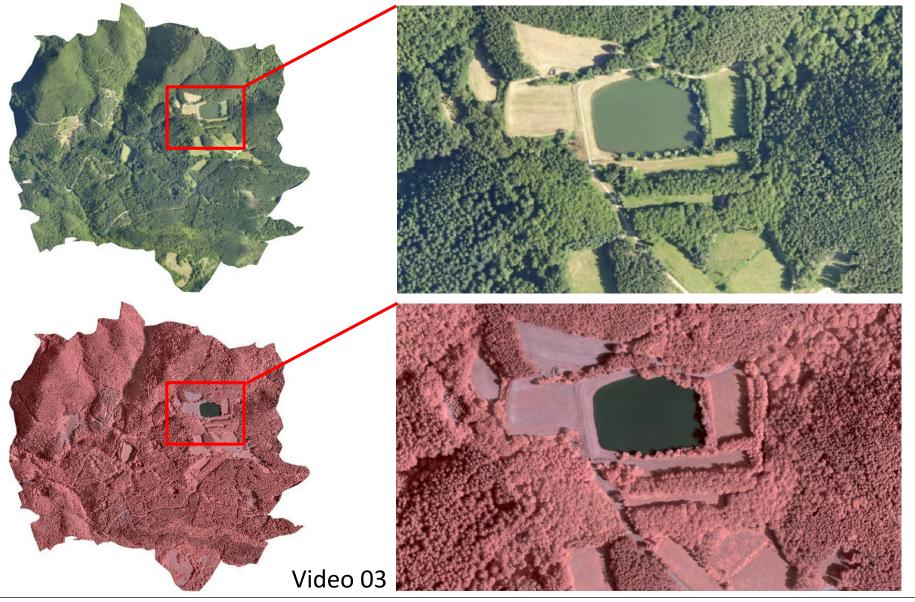
Camera	Study area	Num. of GCP	Num. of flights	Tot. acquisition time	Num. of images
RGB	Caprarola	12	4	3h20'	483
NIR	Caprarola	12	5	4h20'	564
RGB	Bosco Pennataro	12	4	3h50'	608
NIR	Bosco Pennataro	12	5	4h35'	689
RGB	Rincine	12	4	3h25'	506
NIR	Rincine	12	5	4h10'	682
Tot.		36	27	52h40'	3532

Softwares:

- eMotion2 to simulate, to plan and to monitor the flight
- Agisoft PhotoScan for image processing and to create a 3D point cloud

Products:

- 2 dense point clouds, RGB and NIR (ranging between 20-40 points/m²)
- 2 Digital Surface Model DSM (50 cm spatial resolution)
- 2 ortophotos, RGB and NIR (10 cm spatial resolution)



Octocopter – LiDAR sensor

Sensor:

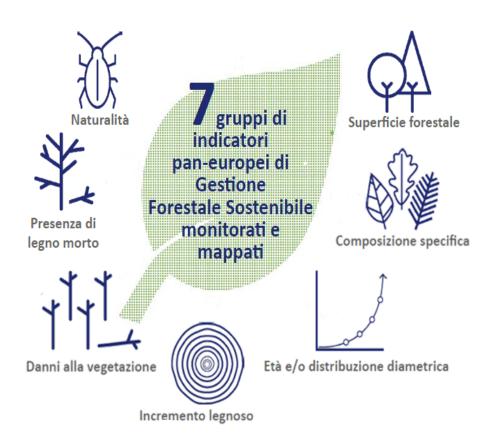
Yellowscan (up to 50 points/m²)

Software:

Lastools for 3D point cloud processing and analysis

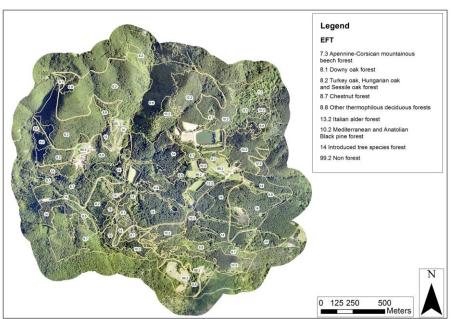
Products:

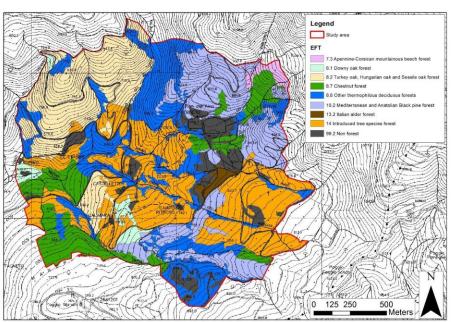
- 3D point cloud
- Digital Surface Model DSM
- Digital Terrain Model DTM
- Canopy Height Model CHM = DSM-DTM



ACTION B3 – Mapping SFM indicators

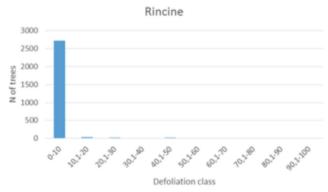
- Action B3 is in progress
- At present we are working on:
 - **EFT** classification
 - Defoliation
 - Growing stock volume

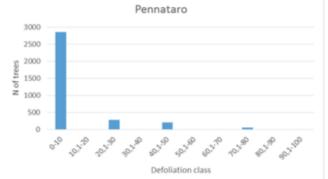




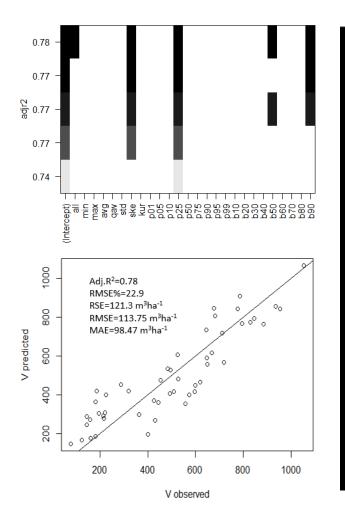
Preliminary results – European Forest Types

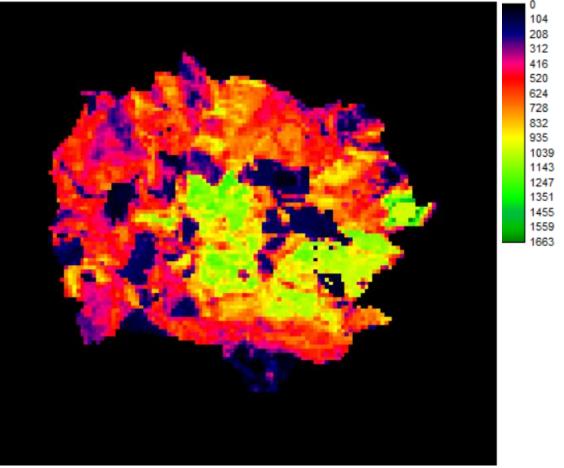
Study area	Visua	l classific	cation	Semiautomatic classification							
	Time (h)	Accur	acy (%)		Accuracy (%)						
		OA	KIA	Segmentation	Classification	Total	OA	KIA			
Rincine	10	0.94	0.92	-	-	-	-	-			
Caprarola	8	0.90	0.82	0.45	3	3.45	0.80	0.62			
Bosco Pennataro	8	0.74	0.37	-	-	-	-	-			





Preliminary results – Defoliation





Preliminary results – Growing stock volume (m³/ha)

Adjusted r^2

